Switch Language

Semáforo Volcánico

Portal recomendado por



Colaboradores




 

 

 

 




El tiempo en Canarias

Patrocinadores

Distribuidor oficial de Vodafone

Nuestros visitantes

890283
HoyHoy12
AyerAyer352
Esta semanaEsta semana2398
Este mesEste mes9038
TotalTotal890283

Peligros volcánicos

Materiales y peligros volcánicos

La salida del magma a la superficie se produce en tres formas: líquido (lavas), gases y proyección de fragmentos sólidos (piroclastos, de piros fuego y clasto fragmento). La cantidad  de gas presente en el magma es el condicionante para que la erupción sea tranquila o explosiva, y de que predomine la emisión de lavas o de piroclastos. Recordemos que una explosión es el resultado de la expansión brusca del gas; un material  explosivo corresponde a una reacción química que produce en muy poco tiempo una gran cantidad de gas.

La peligrosidad puede definirse como la probabilidad de que un lugar, en un intervalo de tiempo determinado, sea afectado por un evento peligroso. El concepto de peligrosidad volcánica engloba aquel conjunto de eventos que se producen en un volcán y pueden provocar daños a personas o bienes expuestos. Por este motivo, la historia eruptiva de un volcán es un factor importante a la hora de determinar su peligrosidad volcánica, al permitirnos definir de forma aproximada su estado actual o más reciente y prever su comportamiento en el futuro (Fig. 41). Los mapas de peligro expresan el grado de probabilidad de que uno de los fenómenos volcánicos (coladas de lava, caída de piroclastos, lahares, etc.) afecte un lugar concreto en un determinado intervalo de tiempo. Cuando estos mapas se hacen para una amplia zona (isla o municipio) y un intervalo de tiempo de 100 años, la información obtenida se utiliza como base para los Planes Generales de Ordenación del Territorio.

Los fenómenos que ocurren en un volcán son bien conocidos desde hace mucho tiempo; sin embargo, para valorarlos en su aspecto directamente relacionado con el riesgo volcánico, es útil repasar las grandes catástrofes de las que tenemos noticias. Se observa, en líneas generales, que las pérdidas en vidas humanas han ocurrido por efectos indirectos (tsunamis, lahares, pérdida de cosechas, etc.) o por una mala gestión de la crisis, pues un volcán no pasa inmediatamente del más absoluto reposo a la más violenta actividad; todas las grandes erupciones vienen precedidas de actividad menor y con la suficiente antelación para tomar las medidas de evacuación de las poblaciones próximas.

La mayor parte de los eventos volcánicos sólo afectan a las proximidades del volcán, como la caída de bombas y las nubes de gases tóxicos, o bien presentan una movilidad baja, como las lavas. Incluso los grandes efectos del volcanismo explosivo están limitados a un entorno de pocos kilómetros, excepto la  caída de cenizas arrastradas por el viento a grandes distancias.  Otras catástrofes asociadas a los volcanes, como pueden ser los  lahares o los deslizamientos de ladera pueden ocurrir sin erupción o terremoto, disparados simplemente por unas lluvias anormales que inestabilizan los materiales volcánicos.

El estudio de la peligrosidad volcánica exige dividir cada uno de los episodios volcánicos en elementos muy sencillos que se evalúan independientemente.

Lavas

Las lavas son rocas de composición homogénea emitidas en forma líquida durante una erupción volcánica. Las propiedades físicas de la lava (especialmente la viscosidad), la variación de temperatura durante su recorrido, el volumen de material emitido y las características del terreno por el que discurre, influyen sobre la morfología final que adquieren. Las lavas muy fluidas se extienden cubriendo grandes extensiones con un pequeño espesor. Las lavas viscosas poseen mayor altura, pero recorren distancias menores y el caso extremo son las lavas muy viscosas que se quedan sobre el propio centro de emisión, formando un domo (Fig. 1). Es importante decir que las lavas se mueven lentamente, salvo casos muy excepcionales, y lejos de los centros de emisión se mueven a unos pocos metros por hora. Por ello, es muy difícil que causen pérdidas de vidas humanas.Fig. 1. Las lavas muy fluidas cubren grandes extensiones con poca altura (1). Las lavas viscosas recorren poca distancia pero alcanzan gran altura (2). Las lavas muy vis- cosas se acumulan sobre el centro de emisión, construyendo un domo (3) que puede alcanzar gran altura.

La altura mínima que debe poseer una lava para que pueda moverse se conoce como altura crítica y depende de la cizalla umbral, es decir la cizalla (rozamiento) mínima que debe aplicarse para que el fluido pueda moverse. La altura crítica va desde unos pocos centímetros hasta varias decenas de metros; las lavas de la erupción de Timanfaya (Lanzarote, Islas Canarias) poseen alturas críticas, moviéndose en el plano horizontal, entre 1.5 y 3 m. En el volcán Teide (Tenerife, Islas Canarias) podemos encontrar lavas con más de 20 m. de altura crítica. A medida que la colada se enfría, va aumentando su cizalla umbral y con ello la altura crítica, por eso, a grandes distancias del centro de emisión la colada tiene mayor espesor. En la anatomía de una lava (Fig. 2) podemos distinguir inicialmente la superficie en contacto con la atmósfera, cuyo aspecto depende del régimen de movimiento de la colada, después observamos el cuerpo de la colada, de aspecto masivo, ya que se enfría lentamente. En la base, encontramos una capa de escorias, formada por el enfriamiento rápido de la lava en contacto con el suelo, más los materiales que ha ido arrastrando y las alteraciones que haya producido por las elevadas temperaturas sobre el propio suelo. El aspecto superficial de una lava (Fig. 2) es muy espectacular, pero meramente anecdótico; ello es debido a la cizalla que el movimientFig 2. Las lavas pahoe-hoe (1) presentan un aspecto liso, ya que la cizalla superficial durante el movimiento es pequeña. Cuando la cizalla sobre la superficie es grande, ésta se rompe (2), dando origen a una lava aa. El interior, una vez solidificado es idéntico en ambas.o del interior de la colada ejerce sobre la superficie cuando ésta empieza a solidificarse. Si la cizalla es pequeña, simplemente provoca una leve ondulación en la superficie, que se conoce con el nombre hawaiano de lavas pahoe-hoe, que significa superficie por donde se puede caminar con los pies descalzos. Cuando la cizalla es lo suficientemente grande, rompe la capa superficial ya parcialmente solidificada, que después el movimiento irá triturando y redondeando; las superficies así creadas se conocen también con el término hawaiano de lavas aa. Las lavas al enfriarse, experimentan una contracción que produce sistemas de fracturas y disyunciones, siendo los principales tipos las disyunciones columnar y lenticular. Otro aspecto que presentan las lavas es la disyunción esferoidal (en bolas de descamación), producidas por la meteorización e infiltración de la humedad a través de las grietas ya existentes.

Gases

Los gases, contenidos en el magma, se emiten a elevada temperatura y ascienden en forma de una columna convectiva, hasta llegar a la altura en la que columna y atmósfera tienen la misma temperatura, cesando entonces el ascenso. Esta columna tiene capacidad para arrastrar gran cantidad de piroclastos y materiales sólidos arrancados del conducto. Como ya se ha indicado anteriormente el gas es el causante del mayor o menor grado de explosividad de la erupción. Además de la salida violenta por el cráter durante la erupción, el gas puede escapar por pequeñas fracturas del edificio volcánico y zonas próximas, dando lugar a fumarolas. También puede salir disuelto en el agua de los acuíferos existentes en el área, originando aguas termales y medicinales. Finalmente, algunos gases como el dióxido Fig 3. 1 penacho de gases, 2 fumarolas, 3 difusión de gasesde carbono (CO2) pueden escapar por difusión a través del suelo, incluso en áreas muy alejadas del volcán (Fig. 3).

Los gases procedentes del magma circulan por el sistema de fracturas, interaccionando con los distintos acuíferos y saliendo a la superficie en forma de fumarolas o de fuentes termales. El SO2 y el CO2 se consideran los componentes más significativos de la presencia de magma. Para obtener información completa sobre la composición del gas volcánico, la única forma consiste en realizar un muestreo directo de las fumarolas, analizándose posteriormente en el laboratorio mediante las técnicas químicas habituales. Esto se debe, fundamentalmente, a que los gases se disipan rápidamente y son fácilmente contaminables, además de salir a elevada temperatura y ser corrosivos, imposibilitando con ello la instalación de sensores de forma permanente.

Flujo y caída de piroclastos

Los fragmentos sólidos o piroclastos expulsados durante una erupción volcánica proceden de la fragmentación del magma producida por la expansión violenta de las burbujas del gas que contiene. Los piroclastos abarcan una gran variedad de tamaños, recibiendo distintos nombres según sus dimensiones:

  • Bloques - mayor de 64 mm
  • Lapilli - Entre 64 mm y 2 mm
  • Ceniza - Menor de 2 mm

Estos materiales fragmentarios son arrastrados violentamente por el gas hasta la boca de emisión. Los más grandes son proyectados balísticamente, incluso a grandes distancias (40 km. en el volcán Asama en Japón), mientras que los más pequeños se incorporan a la columna. Una parte de estos materiales se acumula alrededor del centro emisor formando un cono de cinder o escoria.

Algunos fragmentos de magma del tamaño lapilli a bloque son expulsados en forma líquida, enfriándose parcialmente durante su trayectoria de caída, adoptando formas redondeadas o fusiformes que reciben el nombre de bombas. Las escorias se forman por la soldadura de varios fragmentos que al caer no están totalmente fríos. Las pumitas son materiales fragmentarios muy vesiculados (llenos de pequeñas cavidades producidas por la expansión de las burbujas de gas), generalmente de color claro y densidad inferior al agua.

En otros casos, la columna no posee suficiente fuerza ascensional para elevar todo el material incorporado, produciendo el colapso de la misma; este material cae sobre el volcán, descendiendo rápidamente por las laderas y formando densos flujos que se mueven a gran velocidad (500 km/hora), temperaturas elevadas (700 oC), con gran capacidad de transporte y pueden recorrer hasta 100 km de distancia. Este fenómeno se conoce como colada piroclástica y es uno de los más violentos que pueden ocurrir en una erupción. También existe otro tipo de flujos, producidos cuando la cantidad de gas es muy superior a la cantidad de ceniza, llamadas oleadas piroclásticas (surge) y su movimiento presenta un carácter turbulento.Fig. 4. Anatomía de un flujo piroclástico: 1 masa de gases y cenizas a alta tem- peratura, 2 incorporación de aire, 3 nube acompañante formada por gases y partículas muy finas que se escapan del flujo, 4 nivel de base donde se van depositando los blo- ques más pesados, 5 superficie sobre la que se desplaza.

Los flujos piroclásticos (Fig. 4), característicos del volcanismo explosivo, descritos anteriormente (colada y oleada piroclástica), son los procesos más violentos que pueden ocurrir en un volcán. Una gran masa de gases y cenizas, a temperaturas superiores a 700 ºC se mueven con una velocidad de 150 m/s (540 Km./h) y pueden recorrer distancias de hasta 100 Km. La alta velocidad de estos flujos se explica porque se mueven sobre un colchón formado por el propio gas. Del flujo se escapan gases y cenizas muy finas, que forman una nube acompañante. Al avanzar el flujo, transporta junto con la ceniza, líticos (fragmentos de rocas, arrancados en el momento de la explosión o de las paredes del conducto) y fragmentos de pómez aplastados por la presión (llamados flamas). El flujo se detiene al perder el gas y si la temperatura es todavía lo suficientemente alta, las cenizas se sueldan. Los depósitos procedentes de las coladas piroclásticas se conocen como ignimbritas. Los piroclastos incorporados a la columna de gas, pueden ser arrastrados por el viento y caer en forma de lluvia de cenizas a grandes distancias.

Las oleadas piroclásticas, al ser menos densas, forman depósitos de poca entidad de carácter turbulento y con estructuras de estratificación cruzada, duna y antiduna. Estos flujos se adaptan en su desplazamiento a la topografía preexistente en el terreno, pero con capacidad suficiente para remontar algunos obstáculos. Es importante reconocer los depósitos de los materiales volcánicos en relación con los procesos que los originan.

Lahares

Consisten en una avalancha de materiales volcánicos no consolidados, especialmente cenizas que se han acumulado sobre el cono, y que son movilizados por agua. El conjunto se mueve ladera abajo, canalizándose por los barrancos y cargándose de rocas, troncos, etc., pudiendo recorrer grandes distancias con gran poder destructivo. El agua necesaria para iniciar el proceso puede proceder de lluvias intensas (Pinatubo, Filipinas, 1991) o de la fusión parcial del hielo presente en la cima del volcán (Nevado de Ruiz, Colombia, 1985). Los lahares suelen desencadenarse después de la erupción cuando se combina el máximo
de material no consolidado con la presencia de agua y en las grandes erupciones siguen generándose varios años después de finalizada la erupción.

Colapso

Un fenómeno muy peligroso es el colapso del edificio volcánico, formado por la acumulación de los materiales de sucesivas erupciones sin cohesión entre ellos. La superposición de materiales duros y blandos da lugar a una estructura que, en algunos casos, puede resultar inestable y producir el colapso de una parte del edifico; las capas de materiales blandos y el agua pueden facilitar el movimiento del conjunto. También, la intrusión de un gran volumen de magma en el edificio volcánico puede desestabilizarlo y producir su colapso, como ocurrió en el volcán St. Helens (USA) en 1980.

Fig. 5. Proceso de formación de una caldera de colapso. Se inicia con una sucesión de . erupciones basálticas (1), creándose una incipiente cámara magmática (2), que sigue cre- ciendo y donde se producen procesos de evolución magmática (3), en sucesivas erupcio- nes va aumentando la explosividad y el vaciado de la cámara (4) hasta que el peso de material acumulado, la fracturación del edificio y el vaciado de la cámara conducen al colapso de la estructura en una violenta explosión (5) dando origen a una caldera (6).Calderas

El término caldera es de carácter morfológico y se aplica a relieves en forma de caldero. Actualmente en volcanología se utiliza para caracterizar las estructuras de colapso, formadas después de la salida rápida de un gran volumen de magma que vacía total o parcialmente la cámara magmática, provocando el hundimiento de la estructura que hay encima (Fig. 5). Este colapso reactiva el dinamismo volcánico, generando fases de alta explosividad. El resultado final es una depresión, generalmente de dimensiones kilométricas, con paredes verticales formadas principalmente por los materiales emitidos en esa etapa. Las Cañadas del Teide (Canarias, España), Santorini (Grecia), Campos Flegreos (Italia) y Furnas (Azores, Portugal), son magníficos ejemplos de este proceso. En el cráter de algunos volcanes se forma un lago de lava que, al vaciarse por disminución de la presión del magma o derrame lávico, da origen a estructuras de tipo caldera. El volcán Masaya en Nicaragua puede servir de ejemplo de este proceso. Los maares, producidos en explosiones freáticas presentan también el aspecto de una pequeña caldera

Terremotos

La actividad sísmica presente en un volcán activo es difícil de clasificar y depende de cada escuela. En general, esta actividad incluso en periodos de reposo, puede ser muy intensa, con una gran cantidad de eventos de poca magnitud (menores de 2 en la escala de Richter) que suelen presentarse en grupos o enjambres (Fig. 48), además de los sismos tectónicos que ocurren en la zona. El aumento de la actividad del volcán lleva asociado un incremento de la sismicidad. Estos eventos sísmicos son de pequeña magnitud debido a la escasa energía disponible que puede liberarse como energía sísmica. La fase gaseosa genera leves movimientos sísmicos que son superficiales y sólo pueden ser registrados por estaciones muy próximas. Las explosiones que acompañan a las erupciones también producen un tipo de evento sísmico muy característico, aunque de poca energía. El estudio de las explosiones se realiza combinando un sismómetro con un micrófono, de forma que se pueda separar la onda que llega por el terreno, de la onda sonora que viaja por el aire.